m = mass (kg, slugs )
a g = g = acceleration of gravity (9.81 m/s 2 , 32.17405 ft/s 2 )
The force caused by gravity - a g - is called weight .
Note!
The acceleration of gravity can be observed by measuring the change of velocity related to change of time for a free falling object:
a g = dv / dt (2)
where
dv = change in velocity (m/s, ft/s)
dt = change in time (s)
An object dropped in free air accelerates to speed 9.81 m/s (32.174 ft/s) in one - 1 - second .
1 a g = 1 g = 9.81 m/s 2 = 35.30394 (km/h)/s
1 a g = 1 g = 32.174 ft/s 2 = 386.1 in/s 2 = 22 mph/s
The velocity for a free falling object after some time can be calculated as:
v = a g t (3)
where
v = velocity (m/s)
The distance traveled by a free falling object after some time can be expressed as:
s = 1/2 a g t 2 (4)
where
s = distance traveled by the object (m)
The velocity and distance traveled by a free falling object:
Time (s) | Velocity | Distance | ||||
---|---|---|---|---|---|---|
m/s | km/h | ft/s | mph | m | ft | |
1 | 9.8 | 35.3 | 32.2 | 21.9 | 4.9 | 16.1 |
2 | 19.6 | 70.6 | 64.3 | 43.8 | 19.6 | 64.3 |
3 | 29.4 | 106 | 96.5 | 65.8 | 44.1 | 144.8 |
4 | 39.2 | 141 | 128.7 | 87.7 | 78.5 | 257.4 |
5 | 49.1 | 177 | 160.9 | 110 | 122.6 | 402.2 |
6 | 58.9 | 212 | 193.0 | 132 | 176.6 | 579.1 |
7 | 68.7 | 247 | 225.2 | 154 | 240.3 | 788.3 |
8 | 78.5 | 283 | 257.4 | 176 | 313.9 | 1,029.6 |
9 | 88.3 | 318 | 289.6 | 198 | 397.3 | 1,303.0 |
10 | 98.1 | 353 | 321.7 | 219 | 490.5 | 1,608.7 |
Note! Velocities and distances are achieved without aerodynamic resistance ( vacuum conditions). The air resistance - or drag force - for objects at higher velocities can be significant - depending on shape and surface area.
A stone is dropped from 1470 ft (448 m) - approximately the height of Empire State Building. The time it takes to reach the ground (without air resistance) can be calculated by rearranging (4) :
t = (2 s / a g ) 1/2
= (2 (1470 ft) / (32.174 ft/s 2 )) 1/2
= 9.6 s
The velocity of the stone when it hits the ground can be calculated with (3) :
v = (32.174 ft/s 2 ) (9.6 s)
= 308 ft/s
= 210 mph
= 94 m/s
= 338 km/h
A ball is thrown straight up with an initial velocity of 25 m/s . The time before the ball stops and start falling down can be calculated by modifying (3) to
t = v / a g
= (25 m/s) / (9.81 m/s 2 )
= 2.55 s
The distance traveled by the ball before it turns and start falling down can be calculated by using (4) as
s = 1/2 (9.81 m/s 2 ) ( 2.55 s ) 2
= 31.8 m
"Every body continues in a state of rest or in a uniform motion in a straight line, until it is compelled by a force to change its state of rest or motion."
"To every action there is always an equal reaction - if a force acts to change the state of motion of a body, the body offers a resistance equal and directly opposite to the force."
Acceleration of gravity varies with latitude - examples:
Location | Latitude | Acceleration og Gravity (m/s 2 ) |
---|---|---|
North Pole | 90° 0' | 9.8321 |
Anchorage | 61° 10' | 9.8218 |
Greenwich | 51° 29' | 9.8119 |
Paris | 48° 50' | 9.8094 |
Washington | 38° 53' | 9.8011 |
Panama | 8° 55' | 9.7822 |
Equator | 0° 0' | 9.7799 |
The SI-system, unit converters, physical constants, drawing scales and more.
Motion - velocity and acceleration, forces and torque.
Forces, acceleration, displacement, vectors, motion, momentum, energy of objects and more.
Change in velocity vs. time used.
Acceleration of gravity due to latitude and elevation above sea level.
Converting between units of acceleration.
A turn or change of direction in which the vehicle banks or inclines, usually towards the inside of the turn.
Required forces to move bodies up inclined planes.
Car acceleration calculator.
A body and the center of gravity.
Stability - the center of gravity vs. the center of buoyancy.
Forces due to circular motion and centripetal / centrifugal acceleration.
An introduction to density, specific weight and specific gravity.
Required force and power to lift an elevator.
Newton's third law - force vs. mass and acceleration.
The force ratio is the load force versus the effort force.
The forces acting on bodies moved in horizontal planes.
Mass vs. weight - the Gravity Force.
Calculate the range of a projectile - a motion in two dimensions.
An introduction to the SI metric system.
Properties and data for the Sun, the Earth and the Moon.
Static equilibrium is achieved when the resultant force and resultant moment equals to zero.
A toggle joint mechanism can be used to multiply force.
Gravitational attraction between two objects vs. mass of the objects and the distance between them.
Add standard and customized parametric components - like flange beams, lumbers, piping, stairs and more - to your Sketchup model with the Engineering ToolBox - SketchUp Extension - enabled for use with the amazing, fun and free SketchUp Make and SketchUp Pro . Add the Engineering ToolBox extension to your SketchUp from the Sketchup Extension Warehouse!
We don't collect information from our users. Only emails and answers are saved in our archive. Cookies are only used in the browser to improve user experience.
Some of our calculators and applications let you save application data to your local computer. These applications will - due to browser restrictions - send data between your browser and our server. We don't save this data.
Google use cookies for serving our ads and handling visitor statistics. Please read Google Privacy & Terms for more information about how you can control adserving and the information collected.
AddThis use cookies for handling links to social media. Please read AddThis Privacy for more information.
If you want to promote your products or services in the Engineering ToolBox - please use Google Adwords. You can target the Engineering ToolBox by using AdWords Managed Placements.