Engineering ToolBox - Resources, Tools and Basic Information for Engineering and Design of Technical Applications!

This is an AMP page - Open full page! for all features.

Solids - Volumes and Surfaces

Sponsored Links

Cube

Volume

V = a 3 (1)

where

V = volume (m 3 , ft 3 )

a = side (m, ft)

Surface Area

A 0 = 6 a 2 (1b)

where

A 0 = surface area (m 2 , ft 2 )

Diagonal

d = a 3 1/2 (1c)

where

d = inside diagonal (m, ft)

Diagonal of Cube Face

d s = a 2 1/2 (1d)

Cuboid - Square Prism

Volume

V = a b c                                    (2)

where

V = volume of solid (m 3 , ft 3 )

a = length of rectangular prism (m, ft)

b = width of rectangular prism (m, ft)

c = height of rectangular prism (m, ft)

Diagonal

d =  (a 2 + b 2 + c 2 ) 1/2 (2b)

Surface Area

A 0 = 2 (a b + a c + b c)                                   (2c)

where

A 0 = surface area of solid (m 2 , ft 2 )

Volume:

Surface:

Parallelepiped

Volume

V = A 1 h                                    (3a)

where

A 1 = side area (m 2 , ft 2 )

Related Sketchup Components from The Engineering ToolBox

- free Engineering ToolBox plugin for use with the amazing Sketchup 3D drawing/model application.

Cylinder

Volume

V = π r 2 h = ( π / 4) d 2 h (4a)

where

d = diameter of cylinder (m, ft)

r = radius of cylinder (m, ft)

h = height of cylinder (m, ft)

Surface

A = 2 π r h + 2 π r 2 (4b)

Volume:

Surface:

Hollow Cylinder

Volume

V = π/4 h (D 2 - d 2 )                               (5)

Pyramid

Volume

V = 1/3 h A 1 (6)

where

A 1 = area of base (m 2 , ft 2 )

h = perpendicular height of pyramid (m, ft)

Surface

A = ∑ sum of areas of triangles forming sides + A b (6b)

where

the surface areas of the triangular faces will have different formulas for different shaped bases

Volume:

Frustum of Pyramid

Volume

V = h/3 ( A 1 + A 2 + (A 1 A 2 ) 1/2 )                                     (7)

Cone

Volume

V = 1/3 π r 2 h                              (8a)

where

r = radius of cone base (m, ft)

h = height of cone (m, ft)

Surface

A = π r l + π r 2 (8b)

where

l = (r 2 + h 2 ) 1/2 = length of cone side (m, ft)

Volume:

Surface:

Side

m = (h 2 + r 2 ) 1/2 (8c)

A 2 / A 1 = x 2 / h 2 (8d)

Frustum of Cone

Volume

V = π/12 h (D 2 + D d + d 2 )                              (9a)

m = ( ( (D - d) / 2 ) 2 + h 2 ) 1/2 (9c)

Sphere

Volume

V = 4/3 π r 3

= 1/6 π d 3 (10a)

where

r = radius of sphere (m, ft)

Surface

A = 4 π r 2

= π d 2 (10b)

Volume:

Surface:

Spheres with Fractional Diameters - Surface Areas and Volumes

Spheres with Fractional Diameters - Surface Areas and Volumes
Fraction Diameter
- d –
(inch)
Decimal Diameter
- d –
(inch)

Decimal Radius
– r –
(inch)
Surface Area
- A –
(in 2 )

Volume
- V -
(in 3 )

1/64 0.015625 0.007813 0.0007670 0.0000020
1/32 0.031250 0.015625 0.0030680 0.0000160
3/64 0.046875 0.023438 0.0069029 0.0000539
1/64 0.062500 0.031250 0.0122718 0.0001278
5/64 0.078125 0.039063 0.0191748 0.0002497
3/32 0.093750 0.046875 0.0276117 0.0004314
7/64 0.109375 0.054688 0.0375825 0.0006851
1/8 0.125000 0.062500 0.0490874 0.0010227
9/64 0.140625 0.070313 0.0621262 0.0014561
5/32 0.156250 0.078125 0.0766990 0.0019974
11/64 0.171875 0.085938 0.0928058 0.0026585
3/16 0.187500 0.093750 0.1104466 0.0034515
13/64 0.203125 0.101563 0.1296214 0.0043882
7/32 0.218750 0.109375 0.1503301 0.0054808
15/64 0.234375 0.117188 0.1725728 0.0067411
1/4 0.250000 0.125000 0.1963495 0.0081812
17/64 0.265625 0.132813 0.2216602 0.0098131
9/32 0.281250 0.140625 0.2485049 0.0116487
19/64 0.296875 0.148438 0.2768835 0.0137000
5/16 0.312500 0.156250 0.3067962 0.0159790
21/64 0.328125 0.164063 0.3382428 0.0184977
11/32 0.343750 0.171875 0.3712234 0.0212680
23/64 0.359375 0.179688 0.4057379 0.0243020
3/8 0.375000 0.187500 0.4417865 0.0276117
25/64 0.390625 0.195313 0.4793690 0.0312089
13/32 0.406250 0.203125 0.5184855 0.0351058
27/64 0.421875 0.210938 0.5591360 0.0393142
7/16 0.437500 0.218750 0.6013205 0.0438463
29/64 0.453125 0.226563 0.6450389 0.0487139
15/32 0.468750 0.234375 0.6902914 0.0539290
31/64 0.484375 0.242188 0.7370778 0.0595037
1/2 0.500000 0.250000 0.7853982 0.0654498
33/64 0.515625 0.257813 0.8352525 0.0717795
17/32 0.531250 0.265625 0.8866409 0.0785047
35/64 0.546875 0.273438 0.9395632 0.0856373
9/16 0.562500 0.281250 0.9940196 0.0931893
37/64 0.578125 0.289063 1.0500098 0.1011728
19/32 0.593750 0.296875 1.1075341 0.1095997
39/64 0.609375 0.304688 1.1665924 0.1184820
5/8 0.625000 0.312500 1.2271846 0.1278317
41/64 0.640625 0.320313 1.2893109 0.1376608
21/32 0.656250 0.328125 1.3529711 0.1479812
43/64 0.671875 0.335938 1.4181652 0.1588050
11/16 0.687500 0.343750 1.4848934 0.1701440
45/64 0.703125 0.351563 1.5531555 0.1820104
23/32 0.718750 0.359375 1.6229517 0.1944161
47/64 0.734375 0.367188 1.6942818 0.2073730
3/4 0.750000 0.375000 1.7671459 0.2208932
49/64 0.765625 0.382813 1.8415439 0.2349887
25/32 0.781250 0.390625 1.9174760 0.2496714
51/64 0.796875 0.398438 1.9949420 0.2649532
13/16 0.812500 0.406250 2.0739420 0.2808463
53/64 0.828125 0.414063 2.1544760 0.2973626
27/32 0.843750 0.421875 2.2365440 0.3145140
55/64 0.859375 0.429688 2.3201459 0.3323126
7/8 0.875000 0.437500 2.4052819 0.3507703
57/64 0.890625 0.445313 2.4919518 0.3698991
29/32 0.906250 0.453125 2.5801557 0.3897110
59/64 0.921875 0.460938 2.6698936 0.4102180
15/16 0.937500 0.468750 2.7611654 0.4314321
61/64 0.953125 0.476563 2.8539713 0.4533652
31/32 0.968750 0.484375 2.9483111 0.4760294
63/64 0.984375 0.492188 3.0441849 0.4994366
1 1.000000 0.500000 3.1415927 0.5235988

Zone of a Sphere

V = π/6 h (3a 2 + 3b 2 + h)                             (11a)

A m = 2 π r h    (11b)

A 0 = π (2 r h + a 2 + b 2 )                               (11c)

Segment of a Sphere

V = π/6 h (3/4 s 2 + h 2 )

= π h 2 (r - h/3) (12a)

A m = 2 π r h

= π/4 (s 2 + 4 h 2 ) (12b)

Sector of a Sphere

V = 2/3 π r 2 h (13a)

A 0 = π/2 r (4 h + s)                          (13b)

Sphere with Cylindrical Boring

V = π/6  h 3 (14a)

A 0 = 4 π ((R + r) 3 (R - r)) 1/2

= 2 π h (R + r) (14b)

h = 2 (R 2 - r 2 ) 1/2 (14c)

Sphere with Conical Boring

V = 2/3 π R 2 h (15a)

A 0 = 2 π R (h + (R 2 - h 2 /4) 1/2 ) (15b)

h = 2 (R 2 - r 2 ) 1/2 (15c)

Torus

V = π 2 /4 D d 2 (16a)

A 0 = π 2 D d (16b)

Sliced Cylinder

V = π/4 d 2 h

= π r 2 ((h 1 + h 2 ) / 2) (17a)

A m = π d h

= 2 π r ((h 1 + h 2 ) / 2) (17b)

where

A m = side walls area

A 0 = π r (h 1 + h 2 + r + (r 2 + (h 1 - h 2 ) 2 /4) 1/2 ) (17c)

where

A 0 = surface area

Ungula

V = 2/3 r 2 h (18a)

A m = 2 r h              (18b)

A 0 = A m + π/2 r 2 + π/2 r (r 2 + h 2 ) 1/2 (18c)

Barrel

V ≈ π/12 h (2 D 2 + d 2 ) (19a)

Sponsored Links

Related Topics

Basics

The SI-system, unit converters, physical constants, drawing scales and more.

Mathematics

Mathematical rules and laws - numbers, areas, volumes, exponents, trigonometric functions and more.

Related Documents

Area Units Converter

Convert between units of area.

Centroids of Plane Areas

The controid of square, rectangle, circle, semi-circle and right-angled triangle.

Cooking Units Volume Converter - US and Metric Units

Convert between cooking liquid and dry measuring US and metric volume units.

Cooking Volumes - US Unit Converter

Convert between US cooking volume units.

Cylindrical Tanks - Volumes

Volume in US gallons and liters.

Equal Areas - Circles vs. Squares

Radius and side lengths of equal areas, circles and squares.

Mild Steel - Round Bars Weight

Weight of round bars.

Pipes with Water Content - Weight and Volume

Estimate water content in pipes - weight and volume.

Rectangular Tanks - Volumes

Tank volume per foot depth.

Solids - Melting and Boiling Temperatures

Melting and boiling temperatures of some products.

Squaring with Diagonal Measurements

A rectangle is square if the lengths of both diagonals are equal.

Volume Units Converter

Convert between common volume units like cubic metre, cubic feet, cubic inches and more.

Sponsored Links

Search Engineering ToolBox

  • the most efficient way to navigate the Engineering ToolBox!

SketchUp Extension - Online 3D modeling!

Add standard and customized parametric components - like flange beams, lumbers, piping, stairs and more - to your Sketchup model with the Engineering ToolBox - SketchUp Extension - enabled for use with the amazing, fun and free SketchUp Make and SketchUp Pro . Add the Engineering ToolBox extension to your SketchUp from the Sketchup Extension Warehouse!

Privacy

We don't collect information from our users. Only emails and answers are saved in our archive. Cookies are only used in the browser to improve user experience.

Some of our calculators and applications let you save application data to your local computer. These applications will - due to browser restrictions - send data between your browser and our server. We don't save this data.

Google use cookies for serving our ads and handling visitor statistics. Please read Google Privacy & Terms for more information about how you can control adserving and the information collected.

AddThis use cookies for handling links to social media. Please read AddThis Privacy for more information.