Barlow's Formula - Calculate Internal, Allowable and Bursting Pressure
Calculate pipes internal, allowable and bursting pressure.
Barlow's formula is used to determine
- internal pressure at minimum yield
- ultimate burst pressure
- maximum allowable pressure
Internal Pressure At Minimum Yield
Barlow's formula can be used to calculate the "Internal Pressure" at minimum yield
Py = 2 Sy t / do (1)
where
Py = internal pressure at minimum yield (psig, MPa)
Sy = yield strength (psi, MPa)
t = wall thickness (in, mm)
do = outside diameter (in, mm)
Note! - in codes like ASME B31.3 modified versions of the Barlow's formula - like the Boardman formula and the Lame formula - are used to calculate burst and allowable pressures and minimum wall thickness.
Example - Internal Pressure at Minimum Yield
The internal pressure for a 8 inch liquid pipe line with outside diameter 8.625 in and wall thickness 0.5 in with yield strength 30000 psi can be calculated as
Py = 2 (30000 psi) (0.5 in) / (8.625 in)
= 3478 psi
Example - Polyethylene PE pipe
The yield strength of a 110 mm polyethylene pipe is 22.1 MPa. The minimum wall thickness for pressure 20 bar (2 MPa) can be calculated by rearranging eq. 1 to
t = Py do / (2 Sy)
= (2 MPa) (110 mm) / (2 (22.1 MPa))
= 5 mm
Ultimate Burst Pressure
Barlow's formula can be used to calculate the "Ultimate Burst Pressure" at ultimate (tensile) strength as
Pt = 2 St t / do (2)
where
Pt = ultimate burst pressure (psig)
St = ultimate (tensile) strength (psi)
Example - Ultimate Burst Pressure
The ultimate pressure for the pipe used in the example above with ultimate (tensile) strength 48000 psi can be calculated as
Pt = 2 (48000 psi) (0.5 in) / (8.625 in)
= 5565 psi
Working Pressure or Maximum Allowable Pressure
Working pressure is a term used to describe the maximum allowable pressure a pipe may be subjected to while in-service. Barlow's formula can be used to calculate the maximum allowable pressure by using design factors as
Pa = 2 Sy Fd Fe Ft t / do (3)
where
Pa = maximum allowable design pressure (psig)
Sy = yield strength (psi)
Fd = design factor
Fe = longitudinal joint factor
Ft = temperature derating factor
Typical Design Factors - Fd
- liquid pipelines: 0.72
- gas pipe lines - class 1: 0.72
- gas pipe lines - class 2: 0.60
- gas pipe lines - class 3: 0.50
- gas pipe lines - class 4: 0.40
Example - Maximum Allowable Pressure
The "Maximum Allowable Pressure" for the liquid pipe line used in the examples above with Fd = 0.72, Fe = 1 and Ft = 1 - can be calculated as
Pa = 2 (30000 psi) 0.72 1 1 (0.5 in) / (8.625 in)
= 2504 psi
Barlow's formula is based on ideal conditions and room temperatures.
Mill Test Pressure
The "Mill Test Pressure" refers to the hydrostatic (water) pressure applied to the pipe at the mill to assure the integrity of the pipe body and weld.
Pt = 2 St t / do (4)
where
Pt = test pressure (psig)
St = specified yield strength of material - often 60% of yield strength (psi)
Wall Thickness
Barlow's formula can be useful to calculate required pipe wall thickness if working pressure, yield strength and outside diameter of pipe is known. Barlow's formula rearranged:
tmin = Pi do / (2 Sy) (5)
where
tmin = minimum wall thickness (in)
Pi = Internal pressure in pipe (psi)
Example - Minimum Wall Thickness
The minimum wall thickness for a pipe with the same outside diameter - in the same material with the same yield strength as in the examples above - and with an internal pressure of 6000 psi - can be calculated as
t = (6000 psi) (8.625 in) / (2 (30000 psi))
= 0.863 in
From table - 8 inch pipe Sch 160 with wall thickness 0.906 inches can be used.
Material Strength
The strength of a material is determined by the tension test which measure the tension force and the deformation of the test specimen.
- the stress which gives a permanent deformation of 0.2% is called the yield strength
- the stress which gives rupture is called the ultimate strength or the tensile strength
Typical strength of some common materials:
Material | Yield Strength (psi) | Ultimate (Tensile) Strength (psi) |
---|---|---|
Stainless Steel, 304 | 30000 | 75000 |
6 Moly, S31254 | 45000 | 98000 |
Duplex, S31803 | 65000 | 90000 |
Nickel, N02200 | 15000 | 55000 |
A53 Seamless and Welded Standard Pipe, Grade A | 30000 | 48000 |
A53 Seamless and Welded Standard Pipe, Grade B | 35000 | 60000 |
- 1 psi (lb/in2) = 6,894.8 Pa (N/m2) = 6.895×10-2 bar
- 1 MPa = 106 Pa
Barlow's Pressure Calculator
The Barlow's formula calculator can be used to estimate
- internal pressure at minimum yield
- ultimate burst pressure
- maximum allowable pressure
Barlow's Wall Thickness Calculator
The Barlow's formula calculator can be used to estimate minimum wall thickness of pipe.
Example - A53 Seamless and Welded Standard Pipe - Bursting Pressure
Bursting pressure calculated with Barlow's formula (2) for A53 Seamless and Welded Standard Pipe Grade A with ultimate (tensile) strength 48000 psi. Pipe dimensions - outside diameter and wall thickness according ANSI B36.10.
NPS | Outside Diameter | Bursting Pressure (psi) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Schedule | ||||||||||||||
(in) | (in) | |||||||||||||
10 | 20 | 30 | STD | 40 | 60 | XS | 80 | 100 | 120 | 140 | 160 | XXS | ||
3/8 | 0.675 | 12942 | 12942 | 17920 | 17920 | |||||||||
1/2 | 0.84 | 12457 | 12457 | 16800 | 16800 | 21371 | 33600 | |||||||
3/4 | 1.05 | 10331 | 10331 | 14080 | 14080 | 20023 | 28160 | |||||||
1 | 1.315 | 9710 | 9710 | 13068 | 13068 | 18251 | 26135 | |||||||
1 1/4 | 1.66 | 8096 | 8096 | 11046 | 11046 | 14458 | 22092 | |||||||
1 1/2 | 1.9 | 7326 | 7326 | 10105 | 10105 | 14198 | 20211 | |||||||
2 | 2.375 | 6225 | 6225 | 8812 | 8812 | 13905 | 17624 | |||||||
2 1/2 | 2.875 | 6778 | 6778 | 9216 | 9216 | 12522 | 18432 | |||||||
3 | 3.5 | 5925 | 5925 | 8229 | 8229 | 12014 | 16457 | |||||||
3 1/2 | 4 | 5424 | 5424 | 7632 | 7632 | |||||||||
4 | 4.5 | 5056 | 5056 | 7189 | 7189 | 9344 | 11328 | 14379 | ||||||
5 | 5.563 | 4452 | 4452 | 6471 | 6471 | 8628 | 10786 | 12943 | ||||||
6 | 6.625 | 4057 | 4057 | 6260 | 6260 | 8144 | 10419 | 12520 | ||||||
8 | 8.625 | 2783 | 3083 | 3584 | 3584 | 4519 | 5565 | 5565 | 6611 | 8003 | 9038 | 10084 | 9739 | |
10 | 10.75 | 2233 | 2742 | 3260 | 3260 | 4465 | 4465 | 5305 | 6421 | 7537 | 8930 | 10047 | 8930 | |
12 | 12.75 | 1882 | 2485 | 2824 | 3057 | 4232 | 3765 | 5180 | 6355 | 7529 | 8471 | 9879 | 7529 | |
14 | 14 | 1714 | 2139 | 2571 | 2571 | 3003 | 4073 | 3429 | 5143 | 6432 | 7502 | 8571 | 9641 | |
16 | 16 | 1500 | 1872 | 2250 | 2250 | 3000 | 3936 | 3000 | 5064 | 6186 | 7314 | 8628 | 9564 | |
18 | 18 | 1333 | 1664 | 2336 | 2000 | 2997 | 4000 | 2667 | 5003 | 6165 | 7333 | 8331 | 9499 | |
20 | 20 | 1200 | 1800 | 2400 | 1800 | 2851 | 3898 | 2400 | 4949 | 6149 | 7200 | 8400 | 9451 | |
22 | 22 | 1091 | 1636 | 2182 | 1636 | 3818 | 2182 | 4909 | 6000 | 7091 | 8182 | 9273 | ||
24 | 24 | 1000 | 1500 | 2248 | 1500 | 2752 | 3876 | 2000 | 4876 | 6124 | 7248 | 8248 | 9376 | |
30 | 30 | 998 | 1600 | 2000 | 1200 | 1600 | ||||||||
32 | 32 | 936 | 1500 | 1875 | 1125 | 2064 | ||||||||
34 | 34 | 881 | 1412 | 1765 | 1059 | 1943 | ||||||||
36 | 36 | 832 | 1333 | 1667 | 1000 | 2000 | ||||||||
42 | 42 | 1143 | 1429 | 857 | 1714 | |||||||||
- 1 in (inch) = 25.4 mm
- 1 MPa = 103 kPa = 106 Pa