Engineering ToolBox - Resources, Tools and Basic Information for Engineering and Design of Technical Applications!

Stress in Thin-Walled Cylinders or Tubes

Hoop and longitudinal stress thin-walled tubes or cylinders.

When a thin-walled tube or cylinder is subjected to internal pressure a hoop and longitudinal stress are produced in the wall.

For the thin walled equations below the wall thickness is less than 1/20 of tube or cylinder diameter.

Stress in thin walled cylinders

Hoop (Circumferential) Stress

The hoop stress is acting circumferential and perpendicular to the axis and the radius of the cylinder wall. The hoop stress can be calculated as

σh = p d / (2 t)                         (1)

where

σh = hoop stress (MPa, psi)

p = internal pressure in the tube or cylinder (MPa, psi)

d = internal diameter of tube or cylinder (mm, in)

t = tube or cylinder wall thickness (mm, in)

Longitudinal (Axial) Stress

For a cylinder closed closed in both ends the internal pressure creates a force along the axis of the cylinder. The longitudinal stress caused by this force can be calculated as

σl = p d / (4 t)                               (2)

where

σl = longitudinal stress (MPa, psi)

Stress in thin walled cylinders

Example - Stress in a Thin Walled Tube

The pressure in a thin walled tube with diameter 0.3 m and thickness 0.001 m is 1000 kPa (10 bar).

The hoop stress can be calculated 

σh = (1000 kPa) (0.3 m) / (2 (0.001 m))

    =  150000 kPa

    = 150 MPa  

The longitudinal stress can be calculated 

σh = (1000 kPa) (0.3 m) / (4 (0.001 m))

    =  75000 kPa

    = 75 MPa

Note that typical maximum allowable stress for carbon steel pipes is below 135 MPa.

Search

Search is the most efficient way to navigate the Engineering ToolBox.

Our Mission

The Engineering ToolBox provides a wide range of free tools, calculators, and information resources aimed at engineers and designers. It offers detailed technical data and calculations for various fields such as fluid mechanics, material properties, HVAC systems, electrical engineering, and more.

The site includes resources for common engineering tasks, such as calculating physical properties (e.g., density, viscosity, thermal conductivity), converting units, and designing systems like heating and water distribution.

With sections on everything from acoustics to hydraulics, it serves as a comprehensive tool for both students and professionals in technical and engineering disciplines.

Engineering ToolBox - SketchUp Extension - Online 3D modeling!

3D Engineering ToolBox Extension to SketchUp - add parametric components to your SketchUp model

Add standard and customized parametric components - like flange beams, lumbers, piping, stairs and more - to your Sketchup model with the Engineering ToolBox - SketchUp Extension - enabled for use with older versions of the amazing SketchUp Make and the newer "up to date" SketchUp Pro . Add the Engineering ToolBox extension to your SketchUp Make/Pro from the Extension Warehouse !

Translate this Page

Translate this page to Your Own Language .

About the Engineering ToolBox!

Privacy Policy

We don't collect information from our users. More about

We use a third-party to provide monetization technology for our site. You can review their privacy and cookie policy here.

You can change your privacy settings by clicking the following button: .

Citation

This page can be cited as

  • The Engineering ToolBox (2005). Stress in Thin-Walled Cylinders or Tubes. [online] Available at: https://www.engineeringtoolbox.com/stress-thin-walled-tube-d_948.html [Accessed Day Month Year].

Modify the access date according your visit.

3D Engineering ToolBox - draw and model technical applications! 2D Engineering ToolBox - create and share online diagram drawing templates! Engineering ToolBox Apps - mobile online and offline engineering applications!

Unit Converter


















































3.7.14

.