Engineering ToolBox - Resources, Tools and Basic Information for Engineering and Design of Technical Applications!

Moist Air - Enthalpy

Sensible and latent heat of moist air.

Moist air is a mixture of dry air and water vapor. In atmospheric air water vapor content varies from 0 - 3% by mass. The enthalpy of moist and humid air includes the

  • enthalpy of the dry air - the sensible heat
  • enthalpy of the evaporated water in the air - the latent heat

The total enthalpy - sensible and latent - is used when calculating cooling and heating processes.

Specific enthalpy - h - (J/kg, Btu/lb) of moist air is defined as the total enthalpy (J, Btu) of the dry air and the water vapor mixture - per unit mass (kg, lb) of dry air.

Specific Enthalpy of Moist Air

Specific enthalpy of moist air can be expressed as:

h = ha + x hw                               (1)

where

h= specific enthalpy of moist air (kJ/kg, Btu/lb)

ha= specific enthalpy of dry air (kJ/kg, Btu/lb)

x= humidity ratio (kg/kg, lb/lb)

hw= specific enthalpy of water vapor (kJ/kg, Btu/lb)

Specific Enthalpy of Dry Air - the Sensible Heat

Assuming constant pressure conditions the specific enthalpy of dry air can be expressed as:

ha = cpa t                               (2)

where

cpa= specific heat of air at constant pressure (kJ/kgoC, kWs/kgK, Btu/lboF)

t= air temperature (oC, oF)

For air temperature between -100oC(-150oF) and 100oC(212oF) the specific heat can be set to

cpa= 1.006 (kJ/kgoC)

    = 0.240 (Btu/lboF)

Note! - that the enthalpy is 0 kJ/kg at 0oC. This is not correct according the definition of enthalpy in the thermodynamics, but for practical purposes in air psychrometrics this assumption is good enough since our interest is the enthalpy difference.

Specific Enthalpy of Water Vapor - the Latent Heat

Assuming constant pressure conditions the specific enthalpy of water vapor can be expressed as:

hw = cpw t + hwe                                (3)

where

cpw= specific heat of water vapor at constant pressure (kJ/kgoC, kWs/kgK)

t= water vapor temperature (oC)

hwe= evaporation heat of water at 0oC (kJ/kg)

For water vapor the specific heat can be set to

cpw= 1.86 (kJ/kgoC)

    = 0.444 (Btu/lboF)

The evaporation heat (water at 0oC, 32oF) can be set to

hwe= 2501 (kJ/kg)

    = 1075 (Btu/lb)

Using (2) and (3), (1) can be modified to

h = cpa t + x [cpw t + hwe]                                (4)

(1b) in metric units

h = (1.006 kJ/kgoC) t + x [(1.86 kJ/kgoC) t + (2501 kJ/kg)]                           (5)

where

h = enthalpy (kJ/kg)

x = mass of water vapor (kg/kg)

t = temperature (oC)

(1b) in Imperial units

h = (0.240 Btu/lboF) t + x [(0.444 Btu/lboF) t + (1075 Btu/lb)]                           (6)

where

h = enthalpy (Btu/lb)

x = mass of water vapor (lb/lb)

t = temperature (oF)

Note! - the "reference" points for the metric and imperial enthalpies are different.

  • for eq. (5) metric units - the "reference" point for enthalpy h = 0 (kJ/kg) is t = 0 oC(32oF) and x = 0 kg/kg
  • for eq. (6) imperial units - the "reference" point for enthalpy h = 0 (Btu/lb) is t = 0 oF(-17.8oC) and x = 0 lb/lb. The evaporation heat for water at 0 oF is 1061 Btu/lb as used in eq. (6).

You can not convert from metric to imperial enthalpy or vice versa directly.

Example - Enthalpy in Moist Air

The enthalpy of humid air at 25oC with specific moisture content x = 0.0203 kg/kg (saturation), can be calculated as:

h =(1.006 kJ/kgoC) (25oC) + (0.0203 kg/kg) [(1.86 kJ/kgoC) (25oC) + (2501 kJ/kg)]

= (25.15 kJ/kg) + [(0.94 kJ/kg) + (50.77 kJ/kg)]

= 76.9 (kJ/kg)

Note! - the latent heat due to evaporation of water is the major part of the enthalpy. The sensible heat due to heating evaporated water vapor can be almost neglected.

Enthalpy of Moist Air containing Water as Fog

If the air contains more water than limited by saturation, some of the water exists as droplets - as fog. The enthalpy of moist air with fog can be expressed as:

h = cpa t + xs [cpw t + hwe] + (x - xs) cwt                                 (7)

where

xs= humidity ratio at saturation (kg/kg)

cw= 4.19 - specific heat water (kJ/kgoC)

Enthalpy of Moist Air containing Ice or Snow

If the air contains water as ice or snow, the enthalpy of air can be expressed as:

h = cpa t + xs [cpw t + hwe] + (x - xs) cit- (x - xs) him                               (8)

where

ci= 2.05 - specific heat ice (kJ/kgoC)

him= 335 - melting heat of ice (kJ/kg)

Related Topics

  • Air Psychrometrics

    Moist and humid air calculations. Psychrometric charts and Mollier diagrams. Air-condition systems temperatures, absolute and relative humidities and moisture content in air.

Related Documents

Search

Search is the most efficient way to navigate the Engineering ToolBox.

Engineering ToolBox - SketchUp Extension - Online 3D modeling!

3D Engineering ToolBox Extension to SketchUp - add parametric components to your SketchUp model

Add standard and customized parametric components - like flange beams, lumbers, piping, stairs and more - to your Sketchup model with the Engineering ToolBox - SketchUp Extension - enabled for use with older versions of the amazing SketchUp Make and the newer "up to date" SketchUp Pro . Add the Engineering ToolBox extension to your SketchUp Make/Pro from the Extension Warehouse !

Translate this Page

Translate this page to Your Own Language .

About the Engineering ToolBox!

Privacy Policy

We don't collect information from our users. More about

We use a third-party to provide monetization technologies for our site. You can review their privacy and cookie policy here.

You can change your privacy settings by clicking the following button: .

Citation

This page can be cited as

  • The Engineering ToolBox (2004). Moist Air - Enthalpy . [online] Available at: https://www.engineeringtoolbox.com/enthalpy-moist-air-d_683.html [Accessed Day Month Year].

Modify the access date according your visit.

3D Engineering ToolBox - draw and model technical applications! 2D Engineering ToolBox - create and share online diagram drawing templates! Engineering ToolBox Apps - mobile online and offline engineering applications!

Unit Converter


















































12.6.9

.