Engineering ToolBox - Resources, Tools and Basic Information for Engineering and Design of Technical Applications!

Satellites in Orbit

Orbital and escape velocity for geostationary satellites.

Satellite in orbit

Orbital velocity of a satellite is at maximum at sea level and decreases with height.

Orbital velocity can be calculated as

vs = (g rp2 / rs)1/2                                (1)

where

vs = orbital velocity (m/s)

g = acceleration due to gravity (m/s2) (9.81 m/s2)

rp = radius planet (m) (earth: 6.37×106 m)

rs = radius satellite orbit (m)

Maximum velocity at sea level where radius planet equals radius orbit can be expressed as

vs_max = (g rp)1/2                                (1b)

Escape velocity where the satellite will leave its orbit and escape the planet gravity can be calculated as

vs_escape = (2 g rp)1/2                                (2)

Orbit periodic time can be expressed as

ts = 2 π (rs3 / (g rp2))1/2                         (3)

where

ts = orbit time (s)

Height of orbit can be calculated as

hs = rp ((g ts2 / (4 π2 rp))1/3 - 1)                     (4)

where

hs = height of orbit (m)

Example - Earth bound Satellites

Maximum velocity at sea level:

vs_max = ((9.81 m/s2) (6.37×106 m))1/2  

          = 7905 m/s

          = 7.9 km/h

Escape velocity at sea level:

vs_escape = (2 (9.81 m/s2) (6.37×106 m))1/2    

           = 11179 m/s

           = 11.2 km/h

Height of the synchronous orbit for a geostationary satellite can be calculated by using (4) for an orbit period of 24 hours or 86400 s:

hs = (6.37×106 m) (((9.81 m/s2) (86400 s)2 / (4 π2(6.37×106 m)))1/3 - 1)

    = 35968 km 

Search

Search is the most efficient way to navigate the Engineering ToolBox.

Our Mission

The Engineering ToolBox provides a wide range of free tools, calculators, and information resources aimed at engineers and designers. It offers detailed technical data and calculations for various fields such as fluid mechanics, material properties, HVAC systems, electrical engineering, and more.

The site includes resources for common engineering tasks, such as calculating physical properties (e.g., density, viscosity, thermal conductivity), converting units, and designing systems like heating and water distribution.

With sections on everything from acoustics to hydraulics, it serves as a comprehensive tool for both students and professionals in technical and engineering disciplines.

Engineering ToolBox - SketchUp Extension - Online 3D modeling!

3D Engineering ToolBox Extension to SketchUp - add parametric components to your SketchUp model

Add standard and customized parametric components - like flange beams, lumbers, piping, stairs and more - to your Sketchup model with the Engineering ToolBox - SketchUp Extension - enabled for use with older versions of the amazing SketchUp Make and the newer "up to date" SketchUp Pro . Add the Engineering ToolBox extension to your SketchUp Make/Pro from the Extension Warehouse !

Translate this Page

Translate this page to Your Own Language .

About the Engineering ToolBox!

Privacy Policy

We don't collect information from our users. More about

We use a third-party to provide monetization technology for our site. You can review their privacy and cookie policy here.

You can change your privacy settings by clicking the following button: .

Citation

This page can be cited as

  • The Engineering ToolBox (2019). Satellites in Orbit. [online] Available at: https://www.engineeringtoolbox.com/satellites-orbital-velocity-height-escape-d_2173.html [Accessed Day Month Year].

Modify the access date according your visit.

3D Engineering ToolBox - draw and model technical applications! 2D Engineering ToolBox - create and share online diagram drawing templates! Engineering ToolBox Apps - mobile online and offline engineering applications!

Unit Converter


















































3.7.14

.